EXERCISE
1. Evaluate : (i) ${sin 18°}/{cos 72°}$ (ii) ${tan 26° }/{cot 64°}$ (iii) cos 48° – sin 42° (iv) cosec 31° – sec 59° 2. Show that : (i) tan 48° tan 23° tan 42° tan 67° = 1; (ii) cos 38° cos 52° – sin 38° sin 52° = 0 3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A. 4. If tan A = cot B, prove that A + B = 90°. 5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A. 6. If A, B and C are interior angles of a triangle ABC, then show that sin$({B+C}/2)$=cos$(A/2)$ 7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.Solution