SOLUTIONS
1. Evaluate : (i) ${sin 18°}/{cos 72°}$ (ii) ${tan 26° }/{cot 64°}$ (iii) cos 48° – sin 42° (iv) cosec 31° – sec 59° Note: General concept for solving these type of question $sin θ = cos(90-θ)$ or $cos θ = sin(90-θ)$ and other trigonometric ratios. (i) ${sin 18°}/{cos 72°}$ = ${sin 18°}/{sin (90° - 72°)}$ = ${sin 18°}/{sin 18°}$ = 1 (ii) ${tan 26° }/{cot 64°}$ = ${tan 26° }/{tan(90-64°)}$ = ${tan 26° }/{tan(26°)}$ = 1 (iii) cos 48° – sin 42° = cos 48° – cos(90°- 42°) = cos 48° – cos48° = 0 (iv) cosec 31° – sec 59° = cosec 31° – cosec(90- 59°) = cosec 31° – cosec 31° = 02. Show that : (i) tan 48° tan 23° tan 42° tan 67° = 1; (ii) cos 38° cos 52° – sin 38° sin 52° = 0 (i) tan 48° tan 23° tan 42° tan 67° = tan 48° tan 23° cot(90° - 42°) cot (90° - 67°) = tan 48° tan 23°cot48°cot23° Since $tanθcotθ=1 $ therofore , tan 48° tan 23°cot48°cot23° = 13. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A. Since , we know that tan(θ) =cot(90°-θ), therefore, tan(2A) =cot(90° -2A) given, tan 2A = cot (A – 18°) i.e (90°-2A) = (A-18°) 3A = 90+ 18 3A = 108 A = $108/3$ = 36°4. If tan A = cot B, prove that A + B = 90°. Since we know that tan(A) =cot(90°-A) and given that tan A = cot B i.e B = 90°-A hence, A+B = 90°5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A. We know that sec θ = cosec(90-θ) Therefore sec 4A = cosec(90-4A) Given sec 4A = cosec (A – 20°) therefore (A-20) = 90 -4A 5A = 110 A = 22°6. If A, B and C are interior angles of a triangle ABC, then show that sin$({B+C}/2)$=cos$(A/2)$ Given, A,B, C are the interior of the triangle ABC, i.e A+B+C = 180° => (B+C) = 180°-A Therefore sin$({B+C}/2)$ = sin$({180-A}/2)$ = sin$(90-A/2)$ = cos $A/2$ Hence L.H.S = R.H.S7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°. Since sinA= cos(90-A) and cosA = sin(90-A) Hence sin 67° + cos 75° = cos(90-67°) +sin(90-75°) = cos 23° +sin 15°