An equation is called an identity when it is true for all values of the variables involved.
Similarly, an equation involving trigonometric ratios of an angle is called a trigonometric identity,
if it is true for all values of the angle(s) involved.
In this section, we will prove one trigonometric identity, and use it further to prove other useful trigonometric identities.
In ∆ ABC, right-angled at B ,
we have:
Trigonometric Identities
$AB^2 + BC^2 = AC^2 ..................(1)$ Dividing each term of (1) by $AC^2$, we get ${AB^2}/{AC^2} + {BC^2}/{AC^2} = 1$ $({AB}/{AC})^2 + ({BC}/{AC})^2 = 1$ i.e., $(cos A)^2 + (sin A)^2 = 1$ i.e., $cos^2 A + sin^2 A = 1 $ ................ (2) This is true for all A such that 0° ≤ A ≤ 90°. So, this is a trigonometric identity. Let us now divide (1) by $AB^2$. We get Let us now divide (1) by $AB^2$. We get $({AB}/{AB})^2 + ({BC}/{AB})^2 = ({AC}/{AB})^2$ i.e., $1 + tan^2 A = sec^2 A $ .................(3) Similarly, on dividing (1) by $BC^2$. i.e., $cot^2 A + 1 = cosec^2 A$ ............(4) Note that cosec A and cot A are not defined for A = 0°. Therefore (4) is true for all A such that 0° < A ≤ 90°. Using these identities, we can express each trigonometric ratio in terms of other trigonometric ratios, i.e., if any one of the ratios is known, we can also determine the values of other trigonometric ratios. Let us see how we can do this using these identities. Suppose we know that tan A =$1/√3$ then cot A=$√3$ Since, sec2 A = 1 + tan2 A = $1+1/3$ =$4/3$ ; therefore; sec A= $2/√3$ and cos A=$√3/2$ Again, sin A =$√(1− cos^2 A )$=$√(1-3/4)$=$1/2$; Therefore, cosec A = 2Example: Express the ratios cos A, tan A and sec A in terms of sin A.Solution : Since cos2 A + sin2 A = 1, therefore, cos2 A = 1 – sin2 A, i.e.,$ cos A = ±√(1 − sin^2 A)$ Hence, tan A =${sinA}/{cosA}$ =${sinA}/{√(1 − sin^2 A)}$ and sec A= $1/{cos A}$ =$1/{√(1 − sin^2 A)}$Example: Prove that sec A (1 – sin A)(sec A + tan A) = 1.Solution : LHS = sec A (1 – sin A)(sec A + tan A) = $1/{cosA}(1 – sin A)({1}/{cosA}+{sinA}/{cosA})$ = ${(1-sinA)(1+sinA)}/{cos^2A}$ =${1-sin^2A}/{cos^2A}$ =${cos^2A}/{cos^2A}$ =1Example: Prove that ${cot A – cos A }/{cot A + cos A}$ =${cosec A – 1}/{cosec A + 1}$Solution : LHS =${cot A – cos A }/{cot A + cos A}$ = $ {(cosA)/{sinA} – cos A }/{(cosA)/{sinA} + cos A}$ =${cosA({1}/{sinA} – 1 })/{cosA({1}/{sinA} + 1 }$ =${cosecA-1}/{cosecA+1}$ =RHSExample: Prove that ${sin θ − cos θ + 1 }/{sin θ + cos θ − 1}$=$1/{sec θ − tan θ}$ using the identity sec2 θ = 1 + tan2 θ.Solution: Since we will apply the identity involving sec θ and tan θ, let us first convert the LHS (of the identity we need to prove) in terms of sec θ and tan θ by dividing numerator and denominator by cos θ. LHS= ${sin θ – cos θ + 1 }/{sin θ + cos θ – 1}$ Divide by cos θ ; =${tan θ − 1 + sec θ}/{tan θ + 1 −sec θ}$ =${((tan θ + sec θ) − 1) (tan θ − sec θ) }/{(tan θ − sec θ + 1) (tan θ− sec θ)}$ =${((tan^2 θ - sec^2 θ) − (tan θ − sec θ)) }/{(tan θ − sec θ + 1) (tan θ− sec θ)}$ =${(-1 − tan θ + sec θ) }/{(tan θ − sec θ + 1) (tan θ− sec θ)}$ =${-1 }/{ (tan θ− sec θ)}$ =${1 }/{ (sec θ-tan θ)}$ =RHS