EXERCISE
1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A. 2. Write all the other trigonometric ratios of ∠ A in terms of sec A. 3. Evaluate : (i) ${sin^2 63°+ sin^2 27° }/{cos^2 17° + cos^2 73°}$ (ii) $sin 25° cos 65° + cos 25° sin 65°$ 4. Choose the correct option. Justify your choice. (i) 9 sec2 A – 9 tan2 A = (A) 1 (B) 9 (C) 8 (D) 0 (ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) = (A) 0 (B) 1 (C) 2 (D) –1 (iii) (sec A + tan A) (1 – sin A) = (A) sec A (B) sin A (C) cosec A (D) cos A (iv) ${1 + tan^2 A }/{1 + cot^2 A }$ (A) sec2 A (B) –1 (C) cot2 A (D) tan2 A 5. Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (i) ${(cosec θ – cot θ)^2 ={1 − cos θ}/{1 + cos θ}}$ (ii) ${cosA}/{(1 + sin A)} + {(1 + sin A) }/{cos A}={2 sec A}$ (iii) ${tan θ}/{1− cot θ} + {cot θ}/{1 − tan θ}={1 + sec θcosec θ}$ (iv) ${1 + sec A }/{sec A }={sin^2A}/{1-cos A}$ (v) ${cos A – sin A + 1 }/{cos A + sin A – 1}={cosec A + cot A}$ (vi) $√{(1 + sin A)/(1 – sin A)} = {secA +tan A}$ (vii) ${ sin θ − 2 sin^3 θ}/{ 2 cos^3 θ – cos θ } =tan θ $ (viii) ${(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2 A + cot^2 }$ (ix) $(cosec A – sin A)(sec A – cos A)={1}/{tan A + cot A} $ (x) $({1 + tan^2 A}/{1 + cot^2A }) $ = $({1 − tan A }/{1 – cot A })^2$ =$tan^2 A$Solution