1.   Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.


(i) sin A = $P/H$ , 
Since H = $√(P^2+B^2)$
$.^{.}.$ $P/{√(P^2+B^2)}$
i.e $1/{√(1 +(B/P)^2)}$

Since cot A = $B/P$
$.^{.}.$ sin A = $1/{√(1+cot^2A)}$

(ii) sec A = $H/B$ 
      = ${√(P^2+B^2)}/B$
	  = ${P{√(1+(B/P)^2)}}/B$
	  
	  = ${√(1+(B/P)^2)}/{B/P}$
	  
Since cot A = $B/P$ 

$.^{.}.$ sec A = ${√(1+cot^2 A)}/{cot A}$ 

(iii) tan A = $P/B$
i.e tan A = $1/{B/P}$
Since cot A = $B/P$ 
$.^{.}.$ tan A = $1/{cot A}$


2.   Write all the other trigonometric ratios of ∠ A in terms of sec A.


(i) $sin A$ = $√{sin^2A}$
        = $√(1 - cos^2A)$
        = $√(1 - {1/{sec^2A}})$
		= $√({sec^2A-1}/{sec^2A})$
		= $√({sec^2A-1})/{sec A}$
		
(ii) $cos A$ = $1/{sec A}$

(iii) tanA = $√{tan^2A}$
           = $√{sec^2A-1}$
		   
(iv) cosec A =$√{cosec^2A}$
             = $√{1+cot^2 A}$
             = $√{1+1/{tan^2A}}$
             = $√{1+1/{sec^2A - 1}}$
             = $√({sec^2A}/{sec^2A - 1})$
             = ${sec A}/√{sec^2A - 1}$

(v)cot A = $√{cot^2A}$
		 = $√{1/{tan^2A}}$ 
		 = ${1/√{sec^2A - 1}}$ 

3.   Evaluate :
     (i) ${sin^2   63°+ sin^2   27° }/{cos^2 17° + cos^2   73°}$
	 (ii)   $sin 25° cos 65° + cos 25° sin 65°$


General concept for solving these type of problems.
Using these concept i.e sin θ = cos(90-θ) and $sin^2θ+cos^2θ = 1$ , these problem can be solved.

(i) ${sin^2   63°+ sin^2   27° }/{cos^2 17° + cos^2   73°}$
= ${sin^2   63°+ cos^2   (90°-27°) }/{cos^2 17° + sin^2 (90°-73°)}$
= ${sin^2   63°+ cos^2   (63°) }/{cos^2 17° + sin^2 (17°)}$
=  ${1 }/{1}$ = 1

(ii)   $sin 25° cos 65° + cos 25° sin 65°$
    =   $sin 25° sin(90°-65°)  + cos 25° cos(90°-65°)$
    =   $sin 25° sin(25°)  + cos 25° cos(25°)$
    =   $sin^2 25°  + cos^2 25°$
	= 1
       
	 
4.   Choose the correct option. Justify your choice. 
	(i)   9 sec2  A – 9 tan2  A =
	(A)  1                        (B)  9                         (C)  8                           (D)  0

	(ii)   (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
	(A)  0                        (B)  1                         (C)  2                           (D)  –1 

	(iii)   (sec A + tan A) (1 – sin A) =

	(A)  sec A                (B)  sin A                  (C)  cosec A                (D)  cos A

	(iv) ${1 + tan^2   A  }/{1 + cot^2 A }$	 

	(A)  sec2  A               (B)  –1           (C)  cot2  A         (D)  tan2  A


(i) Since $tan^2A = sec^2A-1$
therefore 9 sec2  A – 9 tan2  A = $9sec^2A-9(sec^2A-1)$ = 90

(ii)(1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
= (1+${sin θ }/{cos θ }$+$1/{cos θ }$)(1+${cos θ }/{sin θ }$ - $1/{sin θ }$)
= $1+{cosθ}/{sinθ}-{1}/{sinθ}+{sinθ}/{cosθ}+{sinθcosθ}/{cosθsinθ}-{sinθ}/{cosθsinθ} +1/{cosθ}+{cosθ}/{cosθsinθ} -1/{cosθsinθ}$
= $2+ {cosθ}/{sinθ} + {sinθ}/{cosθ} - 1/{cosθsinθ}$
= $2+ {cos^2θ+sin^2θ}/{sinθcosθ} - 1/{cosθsinθ}$
= $2+ {1}/{sinθcosθ} - 1/{cosθsinθ}$
= $2$

(iii) (sec A + tan A) (1 – sin A) = $(1/{cosA}+{sinA}/{cosA})(1-sinA)$
		= $1/{cosA} -{sinA}/{cosA} +{sinA}/{cosA} -{sin^2A}/{cosA}$
		=$1/{cosA}-{sin^2A}/{cosA}$
		= $(1-sin^2A)/{cosA}$
		=${cos^2A}/{cosA}$
		= $cosA$


(iv) ${1 + tan^2   A  }/{1 + cot^2 A }$	
     = ${1 + tan^2   A  }/{1 + 1/{tan^2   A} }$
     = $({1 + tan^2   A  }/{tan^2   A + 1 }) tan^2   A$
	 = $tan^2   A$
		
	
5.   Prove the following identities, where the angles involved are acute angles for which the expressions are defined. 

	(i) ${(cosec θ – cot θ)^2 ={1 − cos θ}/{1 + cos θ}}$      


 = $(1/{sinθ} - {cosθ}/{sinθ})^2$
  = $(1/{sin^2θ} + {cos^2θ}/{sin^2θ} -2(1/{sinθ})({cosθ}/{sinθ}))$
  = ${1+cos^2θ-2cosθ}/{sin^2θ}$
  = ${(1-cosθ)^2}/{sin^2θ}$
  = ${(1-cosθ)^2}/{1-cos^2θ}$
  = ${(1-cosθ)^2}/{(1+cosθ)(1-cosθ)}$
  =${1 − cos θ}/{1 + cos θ}$ 
  Hence L.H.S = R.H.S 

	
(ii) ${cosA}/{(1 + sin A)} + {(1 + sin A) }/{cos A}={2 sec A}$ 


= ${cos^2A+1+sin^2A+2sinA}/{(1+sinA)(cosA)}$
= ${2+2sinA}/{(1+sinA)(cosA)}$
= ${2(1+sinA)}/{(1+sinA)(cosA)}$
= ${2}/{(cosA)}$
=$2secA$

	
(iii) ${tan θ}/{1− cot θ} + {cot θ}/{1 − tan θ}={1 + sec θcosec θ}$
	


   ${sinθ}/{cosθ}/{1-{cosθ}/{sinθ}} +{cosθ}/{sinθ}/{1-{sinθ}/{cosθ}}$
   = ${sin^2θ}/{cosθ(sinθ-cosθ)} + {cos^2θ}/{sinθ(cosθ-sinθ)}$
   = ${sin^2θ}/{cosθ(sinθ-cosθ)} - {cos^2θ}/{sinθ(sinθ-cosθ)}$
   = ${sin^3θ -cos^3θ}/{cosθsinθ(sinθ-cosθ)} $
   
   Since $(a^3-b^3) =(a-b)(a^2+ab+b^2)$
   Therefore, ${(sinθ-cosθ)(sin^2θ+sinθcosθ+cos^2θ)}/{cosθsinθ(sinθ-cosθ)} $
   = ${(sin^2θ+sinθcosθ+cos^2θ)}/{cosθsinθ} $
   = ${(1+sinθcosθ)}/{cosθsinθ} $
   = $1/{cosθsinθ} + {cosθsinθ}/{cosθsinθ}$
   =  ${1 + sec θ  cosec θ}$
   Hence L.H.S = R.H.S


	(iv) ${1 + sec A  }/{sec A }={sin^2A}/{1-cos A}$


    = ${1+1/{cosA}}/{1/{cosA}}$
	= $cosA+1$
	= ${(cosA+1)(1-cosA)}/{1-cosA}$
	= ${1-cos^2A}/{1-cosA}$
	= ${sin^2A}/{1-cosA}$
	Hence L.H.S = R.H.S

	(v) ${cos A  – sin  A  + 1  }/{cos A  +  sin  A  – 1}={cosec A  + cot  A}$


Divide numerator and denominator by sinA.
Therefore, ${cos A  – sin  A  + 1  }/{cos A  +  sin  A  – 1}$=$({cotA-1+cosecA}/{cotA+1-cosecA})$
 = $({cotA+cosecA -1}/{cotA+1-cosecA})$
 
 We have to express 1 in terms of $cot and cosec$,
 since we know that $1 =cosec^2A-cot^2A$
 =$({cotA+cosecA -(cosec^2A-cot^2A)}/{cotA+1-cosecA})$
  =$({(cotA+cosecA) -(cosecA-cotA)(cotA+cosecA)}/{cotA+1-cosecA})$
 =$({(cotA+cosecA)(1-(cosecA-cotA))}/{cotA+1-cosecA})$
 =$({(cotA+cosecA)(1-cosecA+cotA))}/{cotA+1-cosecA})$
 =$(cotA+cosecA)$

 Hence L.H.S = R.H.S
 
 

	(vi) $√{(1 + sin A)/(1 – sin A)} = {secA +tan A}$


Multiply the numerator and denominator by $(1+sinA)$
we get,
       $√{(1 + sin A)/(1 – sin A)}$ = $√{(1 + sin A)(1+sinA)}/{(1 – sin A)(1+sinA)}$
                                    = ${√{(1+sinA)^2}/(1-sin^2A)}$
                                     =${√{(1+sinA)^2}/(cos^2A)}$
	                                = ${(1+sinA)}/{cosA}$
	                                = $ 1/{cosA}+{sinA}/{cosA}$
	                                = ${secA +tan A}$


	(vii) ${   sin θ − 2 sin^3 θ}/{ 2 cos^3 θ – cos θ } =tan θ $


   =  ${sinθ(1-2sin^2θ)}/{cosθ(2cos^2θ-1)}$
   since $(sin^2θ+cos^2θ = 1)$
   Therefore =${sinθ(1-2(1-cos^2θ))}/{cosθ(2cos^2θ-1)}$
   =${sinθ(1-2+2cos^2θ))}/{cosθ(2cos^2θ-1)}$
   =${tanθ(2cos^2θ-1))}/{(2cos^2θ-1)}$
   =${tanθ}$
   

	(viii) ${(sin A + cosec A)^2 + (cos A + sec A)^2  = 7 + tan^2 A + cot^2 }$


${(sin A + cosec A)^2 + (cos A + sec A)^2}$ = ${(sinA + 1/{sinA})^2 +(cosA+1/{cosA})^2}$
                            = $({sin^2A}+ 1/{sin^2A} + 2) + ({cos^2A+1/{cos^2A}+2})$
                            = $5+ 1/{sin^2A} +  1/{cos^2A}$
                            = $5+ cosec^2A +  sec^2A$
	Since  $cosec^2A=1+tan^2A$ 
	and    $sec^2A = 1+cot^2A$
	                        = $5+1+tan^2A+1+cot^2A$
				= $7 + tan^2 A + cot^2$
		Hence L.H.S = R.H.S

	(ix) $(cosec A  – sin A)(sec A  – cos A)={1}/{tan A  + cot A} $


  = $(1/{sinA} - sinA)(1/{cosA}-cosA)$  
  =$({1-sin^2A}/{sinA})({1-cos^2A}/{cosA})$
  =$({cos^2A}/{sinA})({sin^2A}/{cosA})$
  = ${sinA}{cosA}$
  
  Since $sin^2A+cos^2A=1$
  
  = ${sinAcosA}/{sin^2A+cos^2A}$
  = $1/{sin^2A}/{sinAcosA}+{cos^2A}/{sinAcosA}$
  = $1/{sinA}/{cosA}+{cosA}/{sinA}$
  = ${1}/{tanA+cotA}$
  
  Hence L.H.S = R.H.S


	(x) $({1 +  tan^2  A}/{1 + cot^2A }) $ = $({1 −  tan A }/{1 – cot A })^2$ =$tan^2 A$


     = $({1+{sin^2A}/{cos^2A}}/{1+{cos^2A}/{sin^2A}})$
     = $({(cos^2A+sin^2A)/{cos^2A}}/{(sin^2A+cos^2A)/{sin^2A}})$
     = $({sin^2A}/{cos^2A})$
     = ${tan^2A}$