Two angles are said to be complementary if their sum equals 90°.
Trigonometric Ratios of ComplementaryAngles
Since ∠ A + ∠ C = 90°, they form complementary angles. Therefore: sin A=${BC}/{AC}$ ; sin C = ${AB}/{AC}$ cos A=${AB}/{AC}$ ; cos C =${BC}/{AC}$ tan A=${BC}/{AB}$ ; tan C = ${AB}/{BC}$ Since ∠ A + ∠ C = 90°, Therefore, ∠ C = 90° – ∠ A. Hence, sin (90° – A) =${AB}/{AC}$ ; cos (90° – A) =${BC}/{AC}$; tan (90° – A) =${AB}/{BC}$ Now, compare the ratios in (1) and (2). Hence :sin (90° – A) =${AB}/{AC}$= cos A cos (90° – A) =${BC}/{AC}$ = sin A. tan (90° – A) =${AB}/{BC}$= cot A ; cot (90° – A)=${BC}/{AB}$=tan A. sec (90° – A)=${AC}/{BC}$= cosec A; cosec (90° – A)=${AC}/{AB}$= sec A. Example: Evaluate ${tan 65°}/{cot 25°}$Solution : cot A = tan (90° – A) cot 25° = tan (90° – 25°) = tan 65° i.e ${tan 65°}/{cot 25°}$=${tan 65°}/{tan 65°} = 1$Example: If sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A.Solution We are given that sin 3A = cos (A – 26°). ............(1) Since sin 3A = cos (90° – 3A), we can write (1) as cos (90° – 3A) = cos (A – 26°) Since 90° – 3A and A – 26° are both acute angles, therefore, 90° – 3A = A – 26° which gives A = 29°Example: Express cot 85° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.Solution : cot 85° + cos 75° = cot (90° – 5°) + cos (90° – 15°) = tan 5° + sin 15°