1.   In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. 

Determine : (i)   sin A, cos A
            (ii)   sin C, cos C

2.   In Fig., find tan P – cot R.
 
    
	 	 
	  P
	  Q
	  R
	  13 cm
	  12 cm 
	  
	 	 
	 
 
3.   If sin A =$3/4$ ,calculate cos A and tan A. 

4.   Given 15 cot A = 8, find sin A and sec A.

5.   Given sec θ = $13/12$,  calculate all other trigonometric ratios.

6.   If ∠ A and ∠ B are acute angles such that cos A = cos B, then show that ∠ A = ∠ B. 

7.   If cot θ =  $7/8$,  evaluate :  (i) ${(1 + sin θ) (1 − sin θ)}/{(1 +  cos θ)(1 − cos θ)}$    , (ii)cot2 θ
 
8.   If 3 cot A = 4, check whether  ${1 −  tan^2  A}/{1 + tan^2A}$ = $cos^2A – sin^2A$ or not. 

9.   In triangle ABC, right-angled at B, if tan A =  $1/√3$; find the value of: 

   (i)  sin A cos C + cos A sin C
   
   (ii)   cos A cos C – sin A sin C
 
10.   In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

11.   State whether the following are true or false. Justify your answer.
 
	(i)   The value of tan A is always less than 1.
	
	(ii)   sec A = $12/5$  for some value of angle A.
	
	(iii)   cos A is the abbreviation used for the cosecant of angle A. 
	
	(iv)   cot A is the product of cot and A.
	
	(v)   sin θ = $4/3$ for some angle θ.


Solution