1.   In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. 

Determine : (i)   sin A, cos A
            (ii)   sin C, cos C


$AC^2=AB^2+BC^2$
$AC^2=24^2+7^2$
AC= 25 cm

sinA= $7/25$, cos A = $24/25$
sin C = $24/25$ , cos C = $7/25$

2.   In Fig., find tan P – cot R.
 
    
	 	 
	  P
	  Q
	  R
	  13 cm
	  12 cm 
	  
	 	 
	 
 
 
 
 ∆PQR is a right angled triangle at Q.
 Hence $PR^2=PQ^2+QR^2$
       $13^2=12^2+QR^2$
	   $QR=√(13^2-12^2)$
	   $QR=√(169-144)$
	   $QR=√25$
	   $QR=5$
	   
	tan P = ${QR}/{PQ}$ = $5/12$
	cot R = ${QR}/{PQ}$ = $5/12$
	
	Therefore tan P - cot R = $5/12$ - $5/12$ = 0
 
3.   If sin A =$3/4$ ,calculate cos A and tan A. 


Given sin A = $3/4$ , 
$.^{.}.$ cos A = $√(1-sin^2A)$
               = $√(1-(3/4)^2)$
               = $√(1-(9/16))$
               = $√((16-9)/16)$
               = $√7/4$
			   
	tan A = ${sinA}/{cosA}$ = ${3/4}/{√7/4}$ = > ${3/√7}$
          

4.   Given 15 cot A = 8, find sin A and sec A.


Given cot A = $8/15$ i.e $B/P$
Therefore H = $√(B^2+P^2)$
             = $√(8^2+15^2)$
             = $√(64+225)$
             = $√289$
             = $17$
	sin A = $P/H$ = $15/17$
and sec A = $H/B$ =$17/8$	

5.   Given sec θ = $13/12$,  calculate all other trigonometric ratios.


Given sec θ = $13/12$ i.e $H/B$
therefore $H=13$ , $B=12$ and P = $√(13^2-12^2)$  => $√25$ => 5
Trigonometric ratios are :
sin A =$P/H$ = $5/13$
cos A = $B/H$ = $12/13$
tan A = $P/B$ = $5/12$
cosec A = $H/P$ = $13/5$
sec A = $H/B$ = $13/12$
cot A = $B/P$ = $12/5$

6.   If ∠ A and ∠ B are acute angles such that cos A = cos B, then show that ∠ A = ∠ B. 


Let ABC be a  triangle , right angled at C.
Given cos A = cos B.
ie. cos A = ${AC}/{AB}$
and cos B = ${BC}/{AB}$
therefore  AC = BC
Therefore ABC is an isoceles triangle with sides AB=AC ,
therefore   ∠ A = ∠ B .


7.   If cot θ =  $7/8$,  evaluate :  (i) ${(1 + sin θ) (1 − sin θ)}/{(1 +  cos θ)(1 − cos θ)}$    , (ii)cot2 θ
 
 
 cot θ = $7/8$ = $B/P$
 i.e B = 7 , P = 8 , 
 so, H = $√(7^2+8^2)$ => $√(49+64)$ => $√(113)$
 sin θ = $P/H$ = $8/√113$
 cos θ = $B/H$ = $7/√113$
 
 (i) ${(1 + sin θ) (1 − sin θ)}/{(1 +  cos θ)(1 − cos θ)}$
    = ${(1 + 8/√113) (1 − 8/√113)}/{(1 +  7/√113)(1 − 7/√113)}$
    = ${(1 − 64/113)}/{(1 − 49/113)}$
    = ${(49/113)}/{(64/113)}$
    = ${49}/{64}$
	
 (ii) $cot^2θ$
     = $(7/8)^2$
	 = $49/64$

 
8.   If 3 cot A = 4, check whether  ${1 −  tan^2  A}/{1 + tan^2A}$ = $cos^2A – sin^2A$ or not. 


	given cot A = $4/3$ = $B/P$
	Therefore H = $√(3^2+4^2)$ = $√25$ = $5$
	L.H.S = ${1 −  tan^2  A}/{1 + tan^2A}$  
	$tan A$ = $1/{cot A}$ = $3/4$
	 = ${1 −  (3/4)^2}/{1 + (3/4)^2}$
	 = ${1 −  (9/16)}/{1 + (9/16)}$
	 = ${(16 −  9)/16}/{(16 + 9)/16}$
	 = $7/25$
	 
    R.H.S = $cos^2A – sin^2A$
	sin A = $P/H$ = $3/5$
	cos A = $B/H$ = $4/5$
	$.^{.}.$ $cos^2A – sin^2A$ = $(4/5)^2-(3/5)^2$ 
	                           = $16/25 - 9/25$
					=$7/25$
	Since L.H.S is equal to R.H.S ,
	therefore ${1 −  tan^2  A}/{1 + tan^2A}$ is equal to $cos^2A – sin^2A$

9.   In triangle ABC, right-angled at B, if tan A =  $1/√3$; find the value of: 

   (i)  sin A cos C + cos A sin C
   
   (ii)   cos A cos C – sin A sin C
 
 
 Triangle ABC is right-angled at B and tan A =  $1/√3$ => ${BC}/{AB}$
 Therefore $AC$ = $√{AB^2+BC^2}$ = $√{3+1}$ = $√4$ = 2 
 Therefore sin A =${BC}/{AC}$ =$1/2$
		 cos A = ${AB}/{AC}$ = $√3/2$
		   sin C = ${AB}/{AC}$ = $√3/2$
		   cos C = ${BC}/{AC}$ = $1/2$
		   
(i) sin A cos C + cos A sin C = $(1/2)(1/2) + (√3/2)(√3/2)$	
                              = $1/4 + 3/4$
				= $4/4$
				=1
				
 (ii)   cos A cos C – sin A sin C = $(√3/2)(1/2) - (1/2)(√3/2)$
                                  = $√3/4$ - $√3/4$
				=0
	
 
10.   In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.


Given, ∆ PQR is a right-angled at Q ,
also given PR + QR = 25 cm and PQ = 5 cm ,
therefore $PR^2=PQ^2+QR^2$
          $PR^2 - QR^2=5^2$ 
		  $(PR-QR)(PR+QR)=25$
		  $(PR-QR)(25)=25$
		  $(PR-QR)=1$
		  
	therefore $2PR = 25 +1$ => $PR=26/2$ = $13$
	and QR = $PR-1$ = $13-1$ = $12$
	
	Therefore ,
	sin P =${QR}/{PR}$ = $12/13$
	cos P = ${PQ}/{PR}$ = $5/13$
	tan P = ${QR}/{PQ}$ = $12/5$


11.   State whether the following are true or false. Justify your answer.
 
	(i)   The value of tan A is always less than 1.
	
	(ii)   sec A = $12/5$  for some value of angle A.
	
	(iii)   cos A is the abbreviation used for the cosecant of angle A. 
	
	(iv)   cot A is the product of cot and A.
	
	(v)   sin θ = $4/3$ for some angle θ.


 (i) False,
   because , tan A = {opposite   side of angle A}$/${Adjacent side of angle A} , 
     if opposite side > adjacent side , then the value of tan A is greater than 1.
	 
 (ii) true,
 
 (iii) false 
 
 (iv) false
 
 (v) false