Now, we divide the given polynomial by ${x^2 – 2}$.
Division Algorithm for Polynomials
Now, we divide the given polynomial by ${x^2 – 2}$.
${2x^4 – 3x^3 – 3x^2 + 6x – 2}$
${x^2 – 2}$
$2x^2$
$-3x$
$+1$
$2x^4 - 4x^2$
($-$)
($+$)
$-3x^3+x^2+6x - 2$
$-3x^3+6x$
($+$)
($-$)
$x^2-2$
$x^2-2$
$(-) (+)$
0
So, ${2x^4 – 3x^3 – 3x^2 + 6x – 2 = (x^2 – 2)(2x^2 – 3x + 1)}$.
Now, by splitting ${–3x}$, we factorise ${2x^2 – 3x + 1}$ as ${(2x – 1)(x – 1)}$. So, its zeroes are given by ${x=1/2}$ and ${x = 1}$.
Therefore, the zeroes of the given polynomial are √2,−√2, ${1/2}$,1.
Now, by splitting ${–3x}$, we factorise ${2x^2 – 3x + 1}$ as ${(2x – 1)(x – 1)}$. So, its zeroes are given by ${x=1/2}$ and ${x = 1}$.
Therefore, the zeroes of the given polynomial are √2,−√2, ${1/2}$,1.
Now, we divide the given polynomial by ${x^2 – 5}$.
Now divide ${x^4-7x^2+10}$ by ${x^2 – 5}$
${x^4-7x^2+10}$
${x^2 – 5}$
$x^2$
$-$
$2$
$x^4 - 5x^2$
($-$)
($+$)
$-2x^2+10$
$-2x^2+10$
($+$)
($-$)
$0 0$
Therefore ${x^4-7x^2+10}$ = $(x^2-5)(x^2-2)$
= $(x-√5)(x+√5)(x-√2)(x+√2)$
Ans:Hence, the zeroes of the polynomial are $√5, -√5, √2, -√2$
${x^4-3x^3-19x^2+27x+90}$
$x^2-9$
$x^2$
$-3x$
$-10$
$x^4$ $-9x^2$
($-$)
($+$)
$-3x^3- 10 x^2+ 27x+90$
$-3x^3$ $+27x$
($+$)
($-$)
$-10x^2$ $+90$
$-10x^2$ $+90$
$(+)$ $(-)$
0