So, dividend = ${–x^3 + 3x^2 – 3x + 5}$ and divisor = ${–x^2 + x – 1}$.
Division Algorithm for Polynomials
So, dividend = ${–x^3 + 3x^2 – 3x + 5}$ and divisor = ${–x^2 + x – 1}$.
${–x^3 + 3x^2 – 3x + 5}$
${-x^2 + x – 1}$
x
$-2$
$-x^3+x^2-x$
($+$)
($-$) ($+$)
$2x^2-2x+5$
$2x^2-2x+2$
($-$)
($+$) ($-$)
$3$
So, quotient = x – 2, remainder = 3.
Now,
Divisor × Quotient + Remainder
= ${(–x^2 + x – 1) (x – 2) + 3}$
= ${–x^3 + x^2 – x + 2x^2 – 2x + 2 + 3}$
= ${–x^3 + 3x^2 – 3x + 5}$
= Dividend
In this way, the division algorithm is verified.