Heights and Distances
Let the PSLV travelled a distance of $x_1$ in 15 minutes. In ∆PAB, $tan 30°$ = ${AB}/{PA}$ = ${x_1}/{60}$ $1/√3$ = ${x_1}/{60}$ ${x_1} = 60/√3$= $20√3$ $km$ Let the PSLV travelled a distance of $x_2$ in 30 minutes. Therefore , in ∆PAC , $tan 60°$ = ${AC}/{PA}$ = $x_2/60$ $√3$ = $x_2/60$ $x_2$ = $60√3$ $km$ Distance travelled by PSLV in 2nd 15 minutes = $x_2 - x_1$ = $60√3 - 20√3 $ = $40√3$ $km$ Average speed of PSLV after 30 minutes = ${60√3}/{1/2}$ $km$/${hr}$ = $120√3$ $km$/${hr}$