How to find Mean of Grouped Data:

(ii) Method 2: The Assumed Mean Method

Mean of deviations is given as:
		$d̄$ = ${Σf_i d_i }/{Σf_i}$
		
Since $d_i=(x_i-a)$

So, $d̄$ = ${Σf_i (x_i-a)}/{Σf_i}$
	   = ${Σf_i x_i}/{Σf_i}$ -   ${aΣf_i}/{Σf_i}$
	 $d̄$  = $x̄$ -   $a$
	 $x̄$ =   $a$ + $d̄$
	 $x̄$ =   $a$ +${Σf_i d_i }/{Σf_i}$

Example:Conside the previos example.
Let the assumed mean of $x̄_i$  be $a$= 17.5 or 22.5.

Case 1: Let $a$ = 17.5
Time taken (in seconds)Frequency ($f_i$)Midpoint($x_i$)$d_i=x_i - a$$f_id_i$
5 ≤ t < 1017.5-10-10
10 ≤ t < 15412.5-5-20
15 ≤ t < 20617.500
20 ≤ t < 25422.5520
25 ≤ t < 30227.51020
30 ≤ t < 35332.51545
Total 2055
$x̄$ = $a$ +${Σf_i d_i }/{Σf_i}$ = 17.5 + $55/20$ = $20.25$ Case 2: Let $a$=22.5
Time taken (in seconds)Frequency ($f_i$)Midpoint($x_i$)$d_i=x_i - a$$f_id_i$
5 ≤ t < 1017.5-15-15
10 ≤ t < 15412.5-10-40
15 ≤ t < 20617.5-5-30
20 ≤ t < 25422.500
25 ≤ t < 30227.5510
30 ≤ t < 35332.51030
Total 20-45
$x̄$ = $a$ +${Σf_i d_i }/{Σf_i}$ = 22.5 + $(-45)/20$ = 22.5 - $2.25$ = $20.25$