How to find Mean of Grouped Data:
(ii) Method 2: The Assumed Mean Method
Mean of deviations is given as:
$d̄$ = ${Σf_i d_i }/{Σf_i}$
Since $d_i=(x_i-a)$
So, $d̄$ = ${Σf_i (x_i-a)}/{Σf_i}$
= ${Σf_i x_i}/{Σf_i}$ - ${aΣf_i}/{Σf_i}$
$d̄$ = $x̄$ - $a$
$x̄$ = $a$ + $d̄$
$x̄$ = $a$ +${Σf_i d_i }/{Σf_i}$
Example:Conside the previos example.
Let the assumed mean of $x̄_i$ be $a$= 17.5 or 22.5.
Case 1: Let $a$ = 17.5
Time taken (in seconds) | Frequency ($f_i$) | Midpoint($x_i$) | $d_i=x_i - a$ | $f_id_i$ |
5 ≤ t < 10 | 1 | 7.5 | -10 | -10 |
10 ≤ t < 15 | 4 | 12.5 | -5 | -20 |
15 ≤ t < 20 | 6 | 17.5 | 0 | 0 |
20 ≤ t < 25 | 4 | 22.5 | 5 | 20 |
25 ≤ t < 30 | 2 | 27.5 | 10 | 20 |
30 ≤ t < 35 | 3 | 32.5 | 15 | 45 |
Total | 20 | | | 55 |
$x̄$ = $a$ +${Σf_i d_i }/{Σf_i}$
= 17.5 + $55/20$
=
$20.25$
Case 2: Let $a$=22.5
Time taken (in seconds) | Frequency ($f_i$) | Midpoint($x_i$) | $d_i=x_i - a$ | $f_id_i$ |
5 ≤ t < 10 | 1 | 7.5 | -15 | -15 |
10 ≤ t < 15 | 4 | 12.5 | -10 | -40 |
15 ≤ t < 20 | 6 | 17.5 | -5 | -30 |
20 ≤ t < 25 | 4 | 22.5 | 0 | 0 |
25 ≤ t < 30 | 2 | 27.5 | 5 | 10 |
30 ≤ t < 35 | 3 | 32.5 | 10 | 30 |
Total | 20 | | | -45 |
$x̄$ = $a$ +${Σf_i d_i }/{Σf_i}$
= 22.5 + $(-45)/20$
= 22.5 - $2.25$
=
$20.25$