QUESTION BANK FOR POLYNOMIALS
1) Find the zeroes of the Quadratic Polynomial (i) $6x^2+x-15$ $6x^2+x-15$ =0 $6x^2+10x-9x-15$ =0 $2x(3x+5)-3(3x+5)$ =0 $(3x+5)(2x-3)=0$ $x=-5/3$ and $x=3/2$ Ans: Zeroes of the polynomial $6x^2+x-15$ are $x=-5/3$ and $x=3/2$2) If the zeroes of the quadratic equation are $1/3$ and $9/4$. Find the quadratic equations. If $1/3$ and $9/4$ are the zeroes of quadratic equations, then the quadratic equation is of the form: $(x-1/3)(x-9/4)=0 $ $(3x-1)(4x-9)=0 $ $12x^2-27x-4x+9 =0 $ $12x^2-31x+9 =0 $ Ans: The quadratic equation is $12x^2-31x+9$3) Find the quadratic polynomial, the sum and product of whose roots are $31/12$ and $3/4$. Let the quadratic polynomial be $ax^2+bx+c$, and its roots be α and β. We have α + β = $31/12$ = $-b/a$ and αβ = $3/4$ = $c/a$ If $a=1$, $b=-31/12$ and $c=3/4$ $ax^2+bx+c$ = $x^2-31/12x+3/4$ $12x^2-31x+9$ Ans: The required polynomial is $12x^2-31x+9$4) Find the value of $k$ such that the polynomial $x^2-(k+6)x+2(2k-1)$ has sum of its zeroes equal to half of their product. For the given polynomial, $x^2-(k+6)x+2(2k-1)$ $a=1$ ; $b=-(k+6)$ and $c=2(2k-1)$ If α and β are the roots of the polynomial, Therefore α+β = $-b/a$ α+β = $-(-(k+6))$=> $(k+6)$ and αβ = $c/a$ = $2(2k-1)$ Given $α+β$ = $1/2(αβ)$ Hence,$(k+6)$=$1/2(2(2k-1))$ $k+6=2k-1$ $k=7$5)Find all the zeroes of the polynomials $2x^4-9x^3+5x^2+3x-1$ , if two of its zeroes are (2+√3) and (2-√3) Since (2+√3) and (2-√3) are the zeroes of the polynomial, therefore $(x-(2+√3))(x-(2-√3))$ is factors of the polynomial. => $(x-2-√3)(x-2+√3)$ => $(x-2)^2-(√3)^2$ (Hint: $(a^2-b^2)=(a-b)(a+b)$) => $x^2-4x+4 - 3$ => $x^2-4x+1$ is factor of polynomial $2x^4-9x^3+5x^2+3x-1$ Divide $2x^4-9x^3+5x^2+3x-1$ with $x^2-4x+1$$2x^4-9x^3+5x^2+3x-1$${x^2-4x+1}$$2x^2$$- x$$- 1$$2x^4-8x^3+2x^2$($-$)($+$) ($-$)$-x^3+3x^2+3x-1 $$-x^3+4x^2-x$($+$)$(-)$ ($+$)$-x^2+4x-1$$-x^2+4x-1$($+$)($-$)($+$)$0$ $0$ $0$