Examples...Zeroes of the Polynomial
Example Find the zeroes of the polynomial $p(x) = x^4 +x^3-2x^2-x+1$.Solution Since the polynomial is of degree 4, so it has at least 4 zeroes. Divide the polynomial by $x^2$ therefore the polynomial becomes, $p(x)=x^4/x^2 +x^3/x^2-{2x^2}/x^2-x/x^2+1/x^2$ $p(x)=x^2 +x-{2}-1/x+1/x^2$ Rearranging the polynomial and equating it ot zero. Therefore the equation become, $x^2+1/x^2 +x-1/x -2 = 0$ Let $x-1/x = y$ squaring both the sides $(x-1/x)^2=y^2$ $ x^2+1/x^2 -2 = y^2$ => $ x^2+1/x^2 =y^2+2$ Substuting in given equation, we have $y^2+2+y-2=0$ $y^2+y=0$ $y(y+1)=0$ So y= 0 or -1 Since $x-1/x=y$ So we have, $x-1/x=0$ $x^2-1=0$ $(x-1)(x+1)=0$ So x= -1 and 1 Also $y=-1$ $x-1/x=-1$ $x^2-1=-x$ $x^2 +x-1=0$ Solving using method of completing the square, $x^2+x$ = $x^2+x/2+x/2 +1/4 -1/4$ =$(x+1/2)^2 -1/4$ Therefore $x^2 +x-1=0$ => $(x+1/2)^2 -1/4 -1=0$ $(x+1/2)^2 -5/4=0$ $(x+1/2)^2 -(√5/2)^2=0$ $(x+1/2+√5/2)=0$ or $(x+1/2-√5/2)=0$ $x+{1+√5}/2=0$ or $(x+{1-√5}/2)=0$ i.e $x= -{1+√5}/2 $ and ${√5-1}/2 $ Answer: Zeroes of the polynomial are ,$ -1$, $1$, $-{1+√5}/2$ and ${√5-1}/2$